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Abstract Natural convection with Soret effect in a binary fluid saturating a shallow horizontal
porous layer is studied both numerically and analytically. The vertical walls of the enclosure are
heated and cooled by uniform heat fluxes and a solutal gradient is imposed vertically. In the
formulation of the problem, we use the Darcy model and the density variation is taken into account
by the Boussinesq approximation. The governing parameters of the problem are the aspect ratio,
A, the thermal Rayleigh number, RT, the buoyancy ratio, N, the Lewis number, Le and the Soret
coefficient, NS. The analytical solution, based on the parallel flow approximation, is found to be in
good agreement with a numerical solution of the full governing equations. In the presence of a
vertical destabilizing concentration gradient, the existence of both natural and antinatural flows is
demonstrated. When the vertical concentration gradient is stabilizing, multiple steady state
solutions are possible in a range of buoyancy ratio, N, that depends strongly on the Soret
coefficient, NS.
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Nomenclature
A ¼ aspect ratio of the enclosure, L0=H 0

CC ¼ dimensionless concentration
gradient in x-direction, equation (15)

CT ¼ dimensionless temperature gradient
in x-direction, equation (15)

D ¼ mass diffusivity
DS ¼ Soret diffusivity
g ¼ gravitational acceleration
H 0 ¼ height of the enclosure
j 0 ¼ constant mass flux per unit area
k ¼ thermal conductivity of the

saturated porous medium
K ¼ permeability of the porous medium

L 0 ¼ width of the cavity
Le ¼ Lewis number, a=D
N ¼ buoyancy ratio, bCDS 0=bTDT 0

NS ¼ Soret coefficient, DSS 0
0DT 0=DDS 0

Nu ¼ Nusselt number, equation (8)
q 0 ¼ constant heat flux per unit area
RT ¼ thermal Rayleigh number,

gbTKq0H
02=ðkanÞ

RS ¼ solutal Rayleigh number,
RS ¼ RTNLe

S ¼ dimensionless concentration,
ðS 0 2 S 0

0Þ=DS 0

Sh ¼ Sherwood number, equation (8)
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Introduction
Double-diffusive natural convection in porous media occurs in many systems
and in nature including the disposal of waste material, groundwater
contamination and chemical transport in packed-bed reactors, grain-storage
installations, food processing and others. Recently, double-diffusive natural
convection in porous media has received considerable attention in view of the
numerous potential applications. In a recent book by Nield and Bejan (1999),
the state of the art has been summarized.

The earlier works on double-diffusive natural convection are concerned with
the onset of motion in a horizontal porous layer. Relying on linear stability
theory, Nield (1968), Rubin (1973) and Taunton et al. (1972) investigated the
onset of double diffusive convection in a horizontal porous layer. Trevisan and
Bejan (1987) studied numerically finite amplitude convection within a
horizontal porous layer heated from below. Thermohaline convection in a
porous medium heated and salted from below was considered by Roserberg
and Spera (1992) for a variety of boundary and initial conditions on the salinity
field. A few studies have also considered natural convection in vertical porous
enclosures, driven by two buoyancy effects. This flow configuration was first
studied by Bejan and his co-works (Trevisan and Bejan, 1985, 1986; Zhang and
Bejan, 1987) for the case of a rectangular cavity with the vertical walls
subjected to various boundary conditions. Recently, Alavyoon and his
co-workers investigated analytically and numerically natural convection in
vertical porous enclosure subject to both cooperative (Alavyoon, 1993) and
opposing (Alavyoon and Masuda, 1993; Alavyoon et al., 1994) fluxes of heat
and solute at the vertical boundaries. The same problem was reconsidered by
Mamou et al. (1998) for a particular situation where the buoyancy forces

t ¼ dimensionless time, t 0=ðsH
02=aÞ

T ¼ dimensionless temperature, ðT 0 2
T 0

0Þ=DT 0

(x, y) ¼ dimensionless coordinate system,
x0=H 0; y0=H 0

(u, v) ¼ dimensionless velocity terms,
u0=ða=H 0Þ; v0=ða=H 0Þ

Greek symbols
a ¼ thermal diffusivity, k=ðrCÞf

bC ¼ solutal expansion coefficient
bT ¼ thermal expansion coefficient
1 ¼ normalized porosity of the porous

medium, 1 ¼ f=s
f ¼ porosity of the porous medium
n ¼ kinematic viscosity of fluid
r ¼ density of fluid
( rC )f ¼ heat capacity of fluid

(rC )p ¼ heat capacity of saturated porous
medium

s ¼ heat capacity ratio, ðrCÞp=ðrCÞf
C ¼ dimensionless stream function,

C0=a
C0 ¼ dimensionless stream function at

the center of the cavity

Superscript
0 ¼ dimensionless variable

Subscripts
C ¼ solutal
0 ¼ refers to the center of the cavity
S ¼ Soret
T ¼ temperature
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induced by the thermal and solutal effects are opposing each and of equal
intensity. These authors reported various complex flow patterns, as well as
unsteady flow.

All the above studies are concerned with the case of cavities, subject to either
vertical or horizontal gradients of heat and mass. However, it is of importance
to understand the flow structures resulting from the imposition of cross fluxes
of heat and mass. As discussed recently by Mohamad and Bennacer (2001),
these type of situations has fundamental importance as well as application in
geophysics and chemical deposition. For instance, near liquid fuel storage
tanks, fuel leaks into soil. Heat source nearby the tank may induce convection
and reduce safety measures of the storage system. Then understanding such a
problem is important in safety analysis. This paper completes the existing
studies (Bennacer et al., 2001; Kalla et al., 2001; Sen et al., 1987) concerning
double-diffusive natural convection in a fluid-saturated porous medium under
cross gradients (first and second kind boundary conditions). Our main purpose
is to delineate the effect of the Soret coefficient on the domain of existence of the
different regimes demonstrated previously. The range of validation of the
analytical model described is confirmed by a numerical solution of the full
governing equations.

Problem statement
The geometry of the physical system considered here is shown in Figure 1. We
consider a two-dimensional horizontal enclosure filled with a homogeneous
fluid-saturated porous medium of height H 0 and width L 0. The Cartesian
coordinates (x 0, y 0) with the corresponding velocity components (u 0, v 0) are
indicated here in. A uniform heat flux per unit area q 0 is applied on the two
vertical walls while the top and bottom horizontal boundaries are subject to the
vertical uniform fluxes of mass j 0. It is assumed that the flow is incompressible

Figure 1.
Schematic diagram of the

problem domain and
coordinate system
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and the binary fluid is Newtonian. The buoyancy term is modeled by
the Boussinesq approximation such that its density, r, varies linearly with
temperature, T 0, and concentration, S 0, as:

r ¼ r
0
½1 2 bTðT

0 2 T 0
0Þ2 bCðS

0 2 S 0
0Þ� ð1Þ

where r0 is the fluid density at reference temperature T 0 ¼ T 0
0 and

concentration S 0 ¼ S 0
0 and bT and bC are the thermal and concentration

expansion coefficients, respectively. The subscript 0 refers to conditions at the
origin of the coordinate system.

The following dimensionless variables (primed quantities are dimensional)
are used:

ðx; yÞ ¼ ðx0; y0Þ=H 0 {u; v} ¼ {u0; v0}=ða=H 0Þ

t ¼ t 0=ðsH
02=aÞ C ¼ C0=a

T ¼ ðT 0 2 T 0
0Þ=DT 0 DT 0 ¼ q0H 0=k

S ¼ ðS 0 2 S 0
0Þ=DS 0 DS 0 ¼ j0H 0=D

A ¼ L0=H 0

9>>>>>>=
>>>>>>;

ð2Þ

where u 0 and v 0 are the volume-averaged velocity components, t 0 is the time,
a ¼ k=ðrCÞf is the thermal diffusivity of the porous medium and
s ¼ ðrCÞp=ðrCÞf is the saturated porous medium to fluid heat capacity ratio
and the mass diffusivity.

The governing equations that describe double-diffusive convection are
expressed in terms of stream-function, temperature and concentration, in
dimensionless form, as follows:

72C ¼ 2RT
›

›x
ðT þ NSÞ ð3Þ

72T ¼ u
›T

›x
þ v

›T

›y
þ

›T

›t
ð4Þ

Le21ð72S þ NS7
2TÞ ¼ u

›S

›x
þ v

›S

›y
þ 1

›S

›t
ð5Þ

where, as usual, the stream function, C, is defined as u ¼ ›C=›y and
v ¼ 2›C=›x such that the continuity equation is satisfied.

In the present study, it is assumed that the solid porous matrix is
homogenous, isotropic and non-deformable with respect to the suturing fluid.
Also, the solid matrix is in thermal equilibrium with the fluid. The momentum
equation (3) is based on the usual Darcy’s law. Thus, both the Brinkman
(viscous) and Forchheimer (inertia) terms are neglected in the governing
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equations. However, as discussed by many authors, (Goyeau et al., 1996;
Lauriat and Prasad, 1987) for many practical purposes, there is no need to
consider these terms.

The dimensionless boundary conditions shown in Figure 1 are:

x ¼ ^A=2 C ¼ 0
›T

›x
¼ 21

›S

›x
þ NS

›T

›x
¼ 0 ð6aÞ

y ¼ ^1=2 C ¼ 0
›T

›y
¼ 0

›S

›y
¼ 1 ð6bÞ

The above equations indicate that the present problem is governed by six
dimensionless parameters, namely the thermal Darcy-Rayleigh number, RT, the
buoyancy ratio, N, the Lewis number, Le, the normalized porosity, 1, the aspect
ratio of the enclosure, A, and the Soret coefficient, NS, defined as:

RT ¼
gbTKq0H

02

kan
N ¼

bCDS 0

bTDT 0

Le ¼
a

D
1 ¼

f

s

A ¼
L0

H 0
NS ¼

DSS 0
0DT 0

DDS 0

9>>>>>>>>=
>>>>>>>>;

ð7Þ

where K, the permeability of the porous medium; g, the acceleration due to
gravity; n, the kinematic viscosity of the fluid and f, the porosity of the porous
medium.

In the present notation, the Nusselt and Sherwood numbers, which are of
interest in engineering applications, are given, respectively, by:

Nu ¼
q0H 0

kDT 0
¼

1

DT
and Sh ¼

j0H 0

DDS 0
¼

1

DS
ð8Þ

where DT is the average temperature difference between the two vertical walls
and DS is the average concentration differences between the two horizontal
walls.

Numerical solution
A control volume approach is used to solve the governing equations with
specified boundary conditions. SIMPLER algorithm is employed to solve the
equations in primitive variables. Central differences are used to approximate
the advection-diffusion terms, i.e. the scheme is second order accurate in space.
The governing equations are converted into a system of algebraic equations
through integration over each control volume. The algebraic equations are
solved by a line-by-line iterative method. The method sweeps the domain of
integration along the x and y-axis and uses tri-diagonal matrix inversion
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algorithm to solve the system of these equations. Fully implicit Euler method is
used to update the solution in the time domain. The criteria of convergence are
to conserve mass, momentum energy and species globally and locally, and to
insure convergence of pre-selected dependent variables to constant values
within machine error at each time step.

In order to insure that the results are size independent, different non-uniform
meshes are tested namely Ny £ Nx ¼ 61 £ 181 and 181 £ 61 grids (where Ny

and Nx represent the grid numbers in the vertical and horizontal directions,
respectively). The difference between these grids was less than 1 percent in Nu,
Sh, maximum u and v-velocity components at the mid plane of the enclosure.
Thus most calculations presented in this paper were performed using a
101 £ 51 grid. Very fine grids are adopted near boundaries. These fine grids are
necessary to resolve narrow channel flow, which is predicted for a range of
controlling parameters. The solution is assumed to be converged when the
error is less than 1028.

Figure 2 shows typical numerical results obtained for A ¼ 8 and various
values of RT, N and NS. The results indicate that the flow in the core region of
the cavity is essentially parallel while the temperature and concentration in the
core are linearly stratified in the horizontal direction. The analytical solution,
developed on the following section, will rely on these observations.

Analytical solution
In the limit of a shallow cavity ðA@1Þ; the equations governing the present
problem can be considerably simplified and solved analytically using the
parallel flow approximation Cðx; yÞ < C ð yÞ; Tðx; yÞ ¼ CTx þ uTð yÞ and
Sðx; yÞ ¼ CCx þ uCð yÞ in the central part of the cavity. CT and CC are unknown
constant temperature and concentration gradients, respectively, in x direction
(Mamou et al., 1998).

With these approximations, the steady form of the governing equations
(3)-(5) can be reduced to the following set of ordinary differential equations:

d2C

dy2
¼ E ð9Þ

d2uT

dy2
¼ CT

dC

dy
ð10Þ

d2uC

dy2
¼ ðLeCC 2 NSCTÞ

dC

dy
ð11Þ

where E ¼ 2RTðCT þ NCCÞ:
The above equations can be solved, together with boundary conditions

(equation 6(b)), to yield the stream function, temperature and concentration
distributions as:
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Cðx; yÞ ¼
E

2
ð y2 2 1=4Þ ð12Þ

Tðx; yÞ ¼ CTx þ
ECT

2

y3

3
2

y

4

� �
ð13Þ

Sðx; yÞ ¼ CCx þ
EðCCLe 2 NSCTÞ

2

y3

3
2

y

4

� �
þ y ð14Þ

The energy and mass balances at each vertical section of the enclosure (Kalla
et al., 2001), yield the following results for CT and CC, respectively:

Figure 2.
Contour lines of stream

function, temperature
and concentration for
different values of NS

and for N ¼ 23 :
(a) RT ¼ 5 and

(b) RT ¼ 20

The Soret effect
on convection

205



CT ¼ 2
120

120 þ E 2
and

CC ¼ LeE þ 12NS
ð120 2 LeE 2Þ

120 þ E 2

� �
10

120 þ Le2E 2

ð15Þ

Upon combining the above equations with the definition of E, it is readily
found that:

A0 þ A1E þ A2E
2 þ A3E

3 þ A4E
4 þ A5E

5 ¼ 0 ð16Þ

where

A0 ¼ 14; 400RTðN NS 2 1Þ A1 ¼ ð14; 400 þ 1; 200RTNLeÞ

A2 ¼ 2120RTLeðLe þ N NSÞ A3 ¼ 10ð12Le2 þ NLeRT þ 12Þ

A4 ¼ 0 A5 ¼ Le2

For given values of RT, Le, N and NS the above transcendental equations can be
solved numerically, using for instance the Muller’s method, to yield the
corresponding value of E, i.e. of CT and CC.

The above equations, in the limit N ¼ NS ¼ 0; reduce to the results
obtained in the past by Vasseur et al. (1986) for the case of a shallow enclosure
heated from the sides by constant fluxes.

Substituting equation (14) into equation (8) yields the Sherwood number as:

Sh ¼
12

12 2 EðLeCC 2 NSCTÞ
ð17Þ

With the present theory, it is not possible to evaluate the Nusselt number since
the details of the solution near the vertical walls are not available. For this
reason, the Nusselt number was evaluated only from the numerical results.

Results and discussion
The analytical solution predicted from the parallel flow approximation was
compared against the numerical solution obtained with the finite volume code
based on the numerical approach described early. The results are presented in
this section.

As discussed earlier, the present problem is governed by six dimensionless
parameters, namely RT, N, Le, 1, NS and A. In the following discussion, it is
assumed that the normalized porosity of the porous medium is 1 ¼ 1 and the
Lewis number Le ¼ 10: All the numerical results were obtained for A ¼ 8
which was found to be sufficient to simulate accurately the infinite porous layer
considered in the analytical model ðA@1Þ:

HFF
13,2

206



Figure 3 shows the vertical profiles of velocity, u, temperature, T and
concentration, S, at mid length ðx ¼ 0Þ of enclosure for the case N ¼ 23;
NS ¼ 20:5; Le ¼ 10 and RT ¼ 2; 20 and 70. It can be seen that the numerical
results are in good agreement with the approximate analytical solution. The
fluid velocity is observed to be varying linearly with y-axis and to be a
maximum on the horizontal boundaries. This result is expected since Darcy’s
law allows the fluid to slip on them. Also, Figure 3(a) shows that the magnitude
of the convective flow increases considerably as the value of RT is made larger.
The influence of RT on the temperature T and concentration S is shown in
Figure 3(b) and (c), respectively. All the curves for T are perpendicular to the
horizontal walls since these boundaries are assumed to be adiabatic. Also, it is
noticed that the curves for S have a constant slope on y ¼ ^1=2 since constant
fluxes of concentration are applied.

The convective motion considered in this investigation is induced by a
combination of thermal and solutal buoyancy forces resulting from both the
thermal and solutal boundary conditions applied on the cavity. For the
particular case N ¼ 0; the solutal buoyancy forces are null and the flow is
induced solely by the thermal fluxes imposed on the vertical walls of the cavity.
From equations (1) and (7), it is clear that a negative value of N corresponds to a
destabilizing vertical solutal gradient, the resulting situation being similar to
the classical Rayleigh-Bénard problem (where the destabilizing agent is heat).
For negative values of N the situation depends on the intensity of this
parameter. Thus, for N !1 a strong stabilizing vertical solutal gradient
prevails and the fluid saturating the porous layer is expected to remain at rest
with purely diffusive temperature and solutal fields. As the value of N is
progressively decreased, the thermal buoyancy forces and the Soret effect
prevailing in the vicinity of the vertical boundaries induce a very weak flow. It
is noted that for NS . 0 both the thermal and solutal buoyancy forces induced
by the Soret effect are cooperative while for NS , 0 they are opposing each
other.

Figure 4(a) shows the effect of the buoyancy ratio, N, on C0, the value of the
stream function at the center of the cavity, for RT ¼ 2 and NS ¼ 20:25; 0 and
0.25. The effect of N on the heat (Nu) and solute (Sh) properties is shown in
Figure 4(b) and (c), respectively. The analytical solution for Sh, represented
by lines, is seen to be in very good agreement with the numerical solution of the
full governing equations, shown by black dots (Figure 4(b)). It is noted with the
present model that it is impossible to predict analytically the Nusselt number
since the details of the flow patterns are known only in the central part of the
cavity. For this reason, the Nusselt number, Nu, is obtained only numerically
(Figure 4(c)).

In general, Figure 4(a) shows that both the intensity and the direction of
rotation of the convective flow within the porous layer are strongly affected by
the buoyancy ratio, N, and Soret coefficient, NS. Thus, for N ¼ 0; the buoyancy
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Figure 3.
Distribution of
(a) horizontal velocity
component, u,
(b) temperature, T, and
(c) concentration, S,
profiles at the vertical
mid-plan ðx ¼ 0Þ of the
cavity for Le ¼ 10;
N ¼ 23; NS ¼ 20:5
and for different values
of RT (RT ¼ 2; 20 and 70)
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Figure 4.
The effect of N on

(a) stream function at the
center of the cavity, C0,

(b) Sherwood number Sh,
and (c) Nusselt number

Nu for RT ¼ 2 and
various values of NS
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effect is caused only by the horizontal temperature gradients giving rise to a
clockwise circulation. For this situation, the strength of the circulation, C0, is
independent of the value of the Soret coefficient, NS. As the value of N
is increased ðN . 0Þ; it is observed that the strength of the convection cell is
progressively annihilated, due to the imposition of a vertical stabilizing solutal
gradient of increasing intensity. Naturally, a positive (negative) Soret
coefficient improves (reduces) the convection since the solutal and thermal
buoyancy forces near the vertical walls are aiding (opposing) each other. It is
noted that C0 becomes positive for NS ¼ 0:25 and N $ 3: This is due to the
fact that the solutal buoyancy forces are more important than those resulting
from the temperature gradients. On the other hand, as the value of N is
negative, both the destabilizing vertical solutal gradients and the horizontal
temperature gradients combine to increase convection. Here again, the Soret
coefficient slightly promotes or decreases the convection according to its sign.

The flow patterns discussed above circulate clockwise ðC0 , 0Þ in
agreement with the buoyancy forces induced by the horizontal temperature
gradient. These flows, which are obtained numerically using the rest state as
initial conditions are referred, as natural flows. However, Figure 4(a) shows
that for sufficiently large negative values of N, other solutions, corresponding
to counterclockwise circulations ðC0 . 0Þ are also possible. These solutions
can be obtained numerically only by starting the numerical calculations with a
flow pattern rotating in the appropriate direction (i.e. counterclockwise). The
minimum value of N for which such multiple solutions are possible depends on
the value of NS. Thus, for the set of parameters considered in Figure 4(a), the
critical value of the buoyancy ratio is N < 22:3 for NS ¼ 20:25; N < 23:3
for NS ¼ 0 and N < 24:5 for NS ¼ 0:25: The existence of these antinatural
solutions can be explained as follows. As discussed earlier, the case RT ¼ 0 and
N , 0 corresponds to the classical Bénard situation for which the fluid
saturating the horizontal porous layer is destabilized by a vertical solutal
gradient. Above a critical value of the solutal Rayleigh number RS ¼ RTNLe; a
unicellular parallel flow is induced within the layer [due to the Neumann
boundary conditions imposed on the horizontal boundaries (Nield, 1968)]. This
flow can rotate indifferently clockwise or counterclockwise. On the other hand,
with the imposition of the horizontal temperature gradient considered here, it
follows that the flow circulation is forced to occur clockwise. However, if the
temperature gradient is very weak (i.e. RT small enough) it is reasonable to
expect that the multiplicity of solutions (clockwise and counterclockwise)
observed for RT ¼ 0 can be preserved. Indeed, this is the case as illustrated by
the numerical results shown in Figure 5 for RT ¼ 2; N ¼ 28 and NS ¼ 20:25:
These solutions are identified as (1) and (2) in Figure 4(a). Figure 5(a) shows
streamlines and contours of temperature and concentration obtained for
clockwise natural situation ðC0 ¼ 20:614Þ: The antinatural counterclockwise
circulation solution shown in Figure 5(b) was obtained using appropriate initial
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conditions. In the pure Bénard situation, the intensity of the clockwise and
counterclockwise cells would be equal. This symmetry is destroyed by the
imposition of thermal ðRT ¼ 2Þ and solutal ðNS ¼ 20:25Þ gradients in the
horizontal direction. Thus, C0 ¼ 20:614 for the natural flow but is reduced to
jC0j ¼ 0:372 for the antinatural flow. Finally, it is observed from Figure 4(a)
that the existence of two convective modes for antinatural flows is predicted by
the analytical solution. The solution corresponding to the higher convective
mode, represented in the graph by lines (solid, dashed and dotted-dashed), was
found to be stable numerically. On the other hand, it has not been possible to
confirm numerically the existence of the lower convective mode depicted by a
dotted line. A stability analysis of these branches would probably demonstrate
that they are unstable.

The effect of the Soret coefficient on the mass transfer, Sh, is shown in
Figure 4(b) and is seen to be significant. As discussed above, the convective
motion becomes diffusive for N @1 such that Sh tends toward unity. For
negative values of N, it is observed that Sh increases asymptotically toward a
constant value as jNj is made large enough. This is a consequence of the
boundary conditions (Neumann) considered here. The corresponding results
obtained for Nu are shown in Figure 4(c). For this situation, only the numerical
results are presented since, as discussed earlier, the analytical model does not
provide any informations in the vicinity of the vertical walls. The influence of
the Soret coefficient on Nu is seen to be relatively small, especially for the case
of the antinatural solutions.

Figure 6(a) shows the effect of the buoyancy ratio, N, on the stream function
at the center of cavity, C0, for RT ¼ 5 and NS ¼ 0; 0.5 and 1, respectively. For
negative values of N, i.e. when the vertical solutal gradient is destabilizing, the
results are qualitatively similar to those discussed in Figure 4(a). Thus, in

Figure 5.
Contour lines of stream

function (top),
temperature (middle) and

concentration (bottom)
for RT ¼ 2; N ¼ 28 and
NS ¼ 20:25 : (a) natural
flow and (b) antinatural

flow
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Figure 6.
The effect of buoyancy
ratio N on the stream
function at the center of
cavity, C0 for various
values of NS (NS ¼ 0; 0.5
and 1): (a) global diagram
and (b) zoom on the
transitional domain for
RT ¼ 5
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addition to the natural flow circulation, antinatural flows are possible provided
that, for a given RS, jRSj is sufficiently large. The results obtained for values of
N are observed to be considerably different from those obtained for RT ¼ 2
(Figure 4(c)). For a given range of N, which depends on NS, multiple solutions
are possible. Figure 6(b) shows a zoom of this region. For N ¼ 0; a relative
strong clockwise circulation is induced by the thermal buoyancy forces. This
solution is independent of the Soret coefficient. For NS ¼ 0; i.e. in the absence
of Soret effect, the strength of the flow circulation decreases monotonously as
the value of N increases. This is due to the annihilating effect of the stable
vertical solutal gradient. The imposition of a positive Soret coefficient modifies
considerably this behavior. Thus for a given range of N, which depends upon
NS, multiple solutions are possible. Figure 7 shows the two different numerical
solutions obtained for N ¼ 0:78 and identified as P1 and P2 in Figure 5(b). The
flow pattern of Figure 7(a) (P1) was obtained by using a flow pattern, obtained
from a smaller value of N (convective solution), as initial conditions. The
resulting strong flow circulation gives rise to a concentration gradient reversal
in the core of the cavity. The other solution, shown in Figure 7(b) (P2) was
obtained by initializing the circulation with a solution obtained for a higher N
(diffusive solution). The corresponding flow pattern is considerably weaker
and characterized by a thermal and solutal diffusive regime. Although, the
analytical solution predicts also the possible existence of a third solution
(dotted line), it has not been possible to obtain numerical solutions for this
probable unstable branch.

Conclusion
In this investigation, the Soret effect on natural convection within a horizontal
porous domain subject to cross fluxes of heat and mass has been investigated

Figure 7.
Contour lines of stream

function (top),
temperature (middle) and

concentration (bottom)
for RT ¼ 5; N ¼ 0:78

and NS ¼ 1
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by both analytical and numerical methods. The influences of the thermal
Rayleigh number, RT, buoyancy ratio, N, and Soret number, NS, on the strength
of convection, C0, Nusselt, Nu, and Sherwood, Sh, number are predicted and
discussed. The main conclusions of the present analysis are as follows.

(1) For negative values of N ðN , 0Þ; i.e. when the vertical solutal gradient
is destabilizing, the flow pattern is characterised by the existence of both
natural and antinatural convection. The natural circulation, induced by
the horizontal thermal gradient, is obtained numerically using the rest
state as initial conditions. The effect of the Soret coefficient is to improve
or reduce the strength of convection according to the sign of this
parameter. The antinatural solution, circulating in a direction opposed
can be obtained numerically through appropriate initial conditions.
Antinatural solutions are possible only for a sufficiently high value of
jNj which depends strongly on NS.

(2) For positive values of N ðN . 0Þ; i.e. when the vertical solutal gradient is
stabilising, the flow pattern depends strongly on the magnitude of RT, N
and NS. For relatively low values of RT, the intensity of the flow pattern
decreases, as the value of N is made larger. Upon increasing RT, both the
numerical and the analytical results indicate the existence of multiple
solutions in a range of the parameter, N, that depends upon NS. Thus
depending on the initial conditions used to start the numerical code two
different solutions, one convective and the other one diffusive are
possible.
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